Connect with us






It has come to the notice of the Parliament of the Student Union concerning the five suspended students union executive members who were suspended by the student union Parliament on the 12th of February, 2022, in the persons of Comr. Vanessa Egbeahie -Vice President, Comr. Afolabi Olaniyi –Public Relations Office (PRO), Comr. Igbinovia Daniel –Director of Welfare, Comr. Eloghosa Idahosa –Director of Finance, and Comr. Oboh Wisdom –Director of Socials, who have been found flaunting the suspension which is seen as a disregard not only to the Parliament but to the Student Union as a whole.

The suspended student union PRO has been seen flaunting the suspension by presenting himself as the mouthpiece of the union in several broadcasts signed by him, and some other members of the suspended executive members who kept presenting themselves in official capacity as student union leaders in the midst of their suspension. For clarity sake, the Parliamentary arm of the union thereby reemphasize and remind the public that five members of the executive council are still under suspension, and it has not been lifted and these suspended executives are expected to stop parading themselves and acting in whatsoever capacity in the name of the union.

The public is to take note and henceforth cease to regard them for the time being in whatever official capacity pending the report of the Investigative committee set up by the Parliament and the actions of the Parliament as regarding their status in the executive council of the student union.

READ ALSO  3 Reasons to Unlock Your PDF File With PDFBear

The five suspended executive members are hereby by this notice advised to adhere to caution by respecting the powers of the Parliament and the student union constitution; and cease in their direct or indirect actions that flaunts the state of their suspension, as failure to adhere would mandate the Parliament to act within the provisions of the student union constitution to the latter. They are also advised to refrain from official activities that affect or relates to the union during the period of investigation.

The Parliament requires them to respect the condition of the suspension and trust the Parliament in good faith to come up with a fair investigative report and to determine their future in the executive council of the student union.

God bless the Union.
God bless University of Benin.
God bless Nigeria.

Rt. Hon Dignity Amenaghawon
Senate President

Hon Nwanne Victoria
Senate Clerk

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.


How to overcome study difficulties




In this article, we’ll consider some of the most common learning problems that can plague students at any stage of their education, and discuss some strategies for coping with them.


  • You have low motivation

Low motivation is one of the biggest problems you will face during your studies. Without enough internal desire to accomplish a tremendous amount of work, it may seem impossible. The key to understanding low motivation is to find out the reasons for it; they may not necessarily be the same reasons for everyone. Low motivation can be seen in certain subjects or all areas. Here are some of its common causes:

  • you are tired and stressed; you have too much to do;
  • there are other, more interesting things to do;
  • you find the subject boring or you don’t like it for some other reason;
  • you don’t like your teacher in a certain subject;
  • other things happen in your life, so studying doesn’t seem important right now;
  • you’re not at your best or you didn’t get enough sleep;

Do you recognize any of the problems listed above in yourself? We will consider many of these problems as we discuss specific problems one by one in the remainder of this article. In addition to taking specific steps to eliminate these possible causes, making an action plan to combat low motivation also means identifying what motivates you. For example, it is:

  • satisfaction with a task?
  • good feedback from teachers?
  • are you considered successful by your peers or parents?
  • short-term rewards, such as a bar of chocolate after a study session?
  • long-term success, such as high grades and a place at the university of your choice?
READ ALSO  Dark Forest Theory

When you know what’s behind your low motivation and have figured out what motivates you to achieve, you’ll be in a better position to take action right away.


  • Too many distractions

There are so many external stimuli these days that it’s not surprising that many students get distracted. Social media, friends, telephone, television, video games, and trips are all definitely affecting to damaging students’ ability to focus on their studies. If you feel that your productivity is suffering from multiple distractions, it’s time to change your work environment into one that is more conducive to learning.

Creating the right environment for learning should be a fairly simple solution to help you overcome the power of all these external distractions. Eliminate the things that are distracting you from your workplace. This could be your phone, Internet, television, and so on. Limit your communication to weekends and consider installing a browser app that will prevent you from checking Facebook or your other favorite sites for certain periods.

If you can’t do your work at home because of a lot of distractions, try working somewhere else.


  • You have difficulties in concentrating

Even if you have eliminated distractions, concentration can still be a serious problem.  

Like low motivation, difficulty concentrating can be caused by several problems. If you can’t concentrate because you have something on your mind, you need to try to clear your head before you get to work or it will reduce your productivity. Taking a refreshing walk or doing some exercise will also help you get rid of your anxiety before you get to work. If it is a more serious personal problem, talk to a psychologist about it to get rid of it or look at the problem from a different, more manageable perspective.

READ ALSO  Uniben Post UTME Form: Uniben Post UTME Form For 2022/2023 Academic Section Is Out On

Another possible reason for the lack of concentration is that the task before you seems so enormous that you don’t know where to start. A good way to solve this problem is to break the task down into smaller, more manageable tasks. 

Finding the right learning style for you can help you focus more easily, as it is sure to be counterproductive to struggle with trying to work in a style that doesn’t work for you. We all learn differently; some of us prefer to work in complete isolation, while others prefer to learn with classmates; some people learn best by making diagrams and drawings, others by writing things down. Try experimenting with different learning styles and see if you can find the best approach to learning – the one that allows you to enjoy what you’re doing, remember information better, and concentrate more easily.

Finally, it’s worth noting that difficulty concentrating can also occur because of too much work. If you’ve been working and not getting enough rest, try giving yourself some time off. Most likely, you will come back refreshed and much better concentrated. As a last resort, you can turn to for help.

  • You have difficulty remembering facts and figures

Students at any stage of their studies often complain that they have trouble remembering all the information they need to answer exam questions effectively. This is difficult enough when you are studying only one subject, like in university, but when you are studying many subjects, memorizing all the facts and figures for each of your subjects can seem like an impossible task. In this case, it is better to prioritize your memorization, use time management, don’t get overwhelmed and give yourself a rest. There are also various assistive techniques for effective memorization.

  • You don’t like the subject you’re studying
READ ALSO  How to overcome study difficulties

At some point in your studies, you will inevitably encounter a subject that you don’t like. Whether it’s because you’re just bored by it, or you feel like you can’t make sense of it, or it seems like a pointless subject, or you have a hatred for it. Dislike of the teacher of the subject, or the fact that the teacher is boring, can also lead to dislike of the subject itself.

To overcome this problem, you need to change your way of thinking. You need to see the bigger picture and how this problematic subject fits into it. You need to remember that you will need good grades across the board for a good academic performance. So think about the skills you get from this subject that can be usefully applied somewhere else, even if the actual knowledge may not be relevant to your career goals.

Continue Reading


What Is operational research




What Is operational research: operational research, also called operational research, application of scientific methods to the management and administration of organized military, governmental, commercial, and industrial processes.

Basic aspects

Operations research attempts to provide those who manage organized systems with an objective and quantitative basis for decision; it is normally carried out by teams of scientists and engineers drawn from a variety of disciplines. Thus, operations research is not a science itself but rather the application of science to the solution of managerial and administrative problems, and it focuses on the performance of organized systems taken as a whole rather than on their parts taken separately. Usually concerned with systems in which human behaviour plays an important part, operations research differs in this respect from systems engineering, which, using a similar approach, tends to concentrate on systems in which human behaviour is not important. Operations research was originally concerned with improving the operations of existing systems rather than developing new ones; the converse was true of systems engineering. This difference, however, has been disappearing as both fields have matured.

The subject matter of operations research consists of decisions that control the operations of systems. Hence, it is concerned with how managerial decisions are and should be made, how to acquire and process data and information required to make decisions effectively, how to monitor decisions once they are implemented, and how to organize the decision-making and decision-implementation process. Extensive use is made of older disciplines such as logic, mathematics, and statistics, as well as more recent scientific developments such as communications theory, decision theory, cybernetics, organization theory, the behavioral sciences, and general systems theory.

In the 19th century the Industrial Revolution involved mechanization or replacement of human by machine as a source of physical work. Study and improvement of such work formed the basis of the field of industrial engineering. Many contemporary issues are concerned with automation or mechanization of mental work. The primary technologies involved are mechanization of symbol generation (observation by machines such as radar and sonar), mechanization of symbol transmission (communication by telephone, radio, and television), and mechanization of logical manipulation of symbols (data processing and decision making by computer). Operations research applies the scientific method to the study of mental work and provides the knowledge and understanding required to make effective use of personnel and machines to carry it out.


In a sense, every effort to apply science to management of organized systems, and to their understanding, was a predecessor of operations research. It began as a separate discipline, however, in 1937 in Britain as a result of the initiative of A.P. Rowe, superintendent of the Bawdsey Research Station, who led British scientists to teach military leaders how to use the then newly developed radar to locate enemy aircraft. By 1939 the Royal Air Force formally commenced efforts to extend the range of radar equipment so as to increase the time between the first warning provided by radar and the attack by enemy aircraft. At first they analyzed physical equipment and communication networks, but later they examined behaviour of the operating personnel and relevant executives. Results of the studies revealed ways of improving the operators’ techniques and also revealed unappreciated limitations in the network.

Similar developments took place in the British Army and the Royal Navy, and in both cases radar again was the instigator. In the army, use of operations research had grown out of the initial inability to use radar effectively in controlling the fire of antiaircraft weapons. Since the traditional way of testing equipment did not seem to apply to radar gunsights, scientists found it necessary to test in the field under operating conditions, and the distinguished British physicist and future Nobel Laureate P.M.S. Blackett organized a team to solve the antiaircraft problem. Blackett’s Antiaircraft Command Research Group included two physiologists, two mathematical physicists, an astrophysicist, an army officer, a former surveyor, and subsequently a third physiologist, a general physicist, and two mathematicians.

By 1942 formal operations research groups had been established in all three of Britain’s military services.

Development of operations research paralleling that in Britain took place in Australia, Canada, France, and, most significantly for future developments, in the United States, which was the beneficiary of a number of contacts with British researchers. Sir Robert Watson-Watt, who with A.P. Rowe launched the first two operational studies of radar in 1937 and who claims to have given the discipline its name, visited the United States in 1942 and urged that operations research be introduced into the War and Navy departments. Reports of the British work had already been sent from London by American observers, and James B. Conant, then chairman of the National Defense Research Committee, had become aware of operations research during a visit to England in the latter half of 1940. Another stimulant was Blackett’s memorandum, “Scientists at the Operational Level,” of December 1941, which was widely circulated in the U.S. service departments.

The first organized operations research activity in the United States began in 1942 in the Naval Ordnance Laboratory. This group, which dealt with mine warfare problems, was later transferred to the Navy Department, from which it designed the aircraft mining blockade of the Inland Sea of Japan.

As in Britain, radar stimulated developments in the U.S. Air Force. In October 1942, all Air Force commands were urged to include operations research groups in their staffs. By the end of World War II there were 26 such groups in the Air Force. In 1943 Gen. George Marshall suggested to all theatre commanders that they form teams to study amphibious and ground operations.

At the end of World War II a number of British operations research workers moved to government and industry. Nationalization of several British industries was an important factor. One of the first industrial groups was established at the National Coal Board. Electricity and transport, both nationalized industries, began to use operations research shortly thereafter. Parts of the private sector began to follow suit, particularly in those industries with cooperative research associations; for example, in the British Iron and Steel Research Association.

The early development of industrial operations research was cautious, and for some years most industrial groups were quite small. In the late 1950s, largely stimulated by developments in the United States, the development of industrial operations research in Britain was greatly accelerated.

Although in the United States military research increased at the end of the war, and groups were expanded, it was not until the early 1950s that American industry began to take operations research seriously. The advent of the computer brought an awareness of a host of broad system problems and the potentiality for solving them, and within the decade about half the large corporations in the United States began to use operations research. Elsewhere the technique also spread through industry.

Societies were organized, beginning with the Operational Research Club of Britain, formed in 1948, which in 1954 became the Operational Research Society. The Operations Research Society in America was formed in 1952. Many other national societies appeared; the first international conference on operations research was held at Oxford University in 1957. In 1959 an International Federation of Operational Research Societies was formed.

The first appearance of operations research as an academic discipline came in 1948 when a course in nonmilitary techniques was introduced at the Massachusetts Institute of Technology in Cambridge. In 1952 a curriculum leading to a master’s and doctoral degree was established at the Case Institute of Technology (now Case Western Reserve University) in Cleveland. Since then many major academic institutions in the United States have introduced programs. In the United Kingdom courses were initiated at the University of Birmingham in the early 1950s. The first chair in operations research was created at the newly formed University of Lancaster in 1964. Similar developments have taken place in most countries in which a national operations research society exists.

READ ALSO  9 Amazing Things You Can Do With PDF

The first scholarly journal, the Operational Research Quarterly, published in the United Kingdom, was initiated in 1950; in 1978 its name was changed to the Journal of the Operational Research Society. It was followed in 1952 by the Journal of the Operations Research Society of America, which was renamed Operations Research in 1955. The International Federation of Operational Research Societies initiated the International Abstracts in Operations Research in 1961.

Despite its rapid growth, operations research is still a relatively young scientific activity. Its techniques and methods, and the areas to which they are applied, can be expected to continue to expand rapidly. Most of its history lies in the future.

Essential characteristics

Three essential characteristics of operations research are a systems orientation, the use of interdisciplinary teams, and the application of scientific method to the conditions under which the research is conducted.

Systems orientation

The systems approach to problems recognizes that the behaviour of any part of a system has some effect on the behaviour of the system as a whole. Even if the individual components are performing well, however, the system as a whole is not necessarily performing equally well. For example, assembling the best of each type of automobile part, regardless of make, does not necessarily result in a good automobile or even one that will run, because the parts may not fit together. It is the interaction between parts, and not the actions of any single part, that determines how well a system performs.

Thus, operations research attempts to evaluate the effect of changes in any part of a system on the performance of the system as a whole and to search for causes of a problem that arises in one part of a system in other parts or in the interrelationships between parts. In industry, a production problem may be approached by a change in marketing policy. For example, if a factory fabricates a few profitable products in large quantities and many less profitable items in small quantities, long efficient production runs of high-volume, high-profit items may have to be interrupted for short runs of low-volume, low-profit items. An operations researcher might propose reducing the sales of the less profitable items and increasing those of the profitable items by placing salesmen on an incentive system that especially compensates them for selling particular items.

The interdisciplinary team

Scientific and technological disciplines have proliferated rapidly in the last 100 years. The proliferation, resulting from the enormous increase in scientific knowledge, has provided science with a filing system that permits a systematic classification of knowledge. This classification system is helpful in solving many problems by identifying the proper discipline to appeal to for a solution. Difficulties arise when more complex problems, such as those arising in large organized systems, are encountered. It is then necessary to find a means of bringing together diverse disciplinary points of view. Furthermore, since methods differ among disciplines, the use of interdisciplinary teams makes available a much larger arsenal of research techniques and tools than would otherwise be available. Hence, operations research may be characterized by rather unusual combinations of disciplines on research teams and by the use of varied research procedures.


Until the 20th century, laboratory experiments were the principal and almost the only method of conducting scientific research. But large systems such as are studied in operations research cannot be brought into laboratories. Furthermore, even if systems could be brought into the laboratory, what would be learned would not necessarily apply to their behaviour in their natural environment, as shown by early experience with radar. Experiments on systems and subsystems conducted in their natural environment (“operational experiments”) are possible as a result of the experimental methods developed by the British statistician R.A. Fisher in 1923–24. For practical or even ethical reasons, however, it is seldom possible to experiment on large organized systems as a whole in their natural environments. This results in an apparent dilemma: to gain understanding of complex systems experimentation seems to be necessary, but it cannot usually be carried out. This difficulty is solved by the use of models, representations of the system under study. Provided the model is good, experiments (called “simulations”) can be conducted on it, or other methods can be used to obtain useful results.

Phases of operations research

Problem formulation

To formulate an operations research problem, a suitable measure of performance must be devised, various possible courses of action defined (that is, controlled variables and the constraints upon them), and relevant uncontrolled variables identified. To devise a measure of performance, objectives are identified and defined, and then quantified. If objectives cannot be quantified or expressed in rigorous (usually mathematical) terms, most operations research techniques cannot be applied. For example, a business manager may have the acquisitive objective of introducing a new product and making it profitable within one year. The identified objective is profit in one year, which is defined as receipts less costs, and would probably be quantified in terms of sales. In the real world, conditions may change with time. Thus, though a given objective is identified at the beginning of the period, change and reformulation are frequently necessary.

Detailed knowledge of how the system under study actually operates and of its environment is essential. Such knowledge is normally acquired through an analysis of the system, a four-step process that involves determining whose needs or desires the organization tries to satisfy; how these are communicated to the organization; how information on needs and desires penetrates the organization; and what action is taken, how it is controlled, and what the time and resource requirements of these actions are. This information can usually be represented graphically in a flowchart, which enables researchers to identify the variables that affect system performance.

Once the objectives, the decision makers, their courses of action, and the uncontrolled variables have been identified and defined, a measure of performance can be developed and selection can be made of a quantitative function of this measure to be used as a criterion for the best solution.

The type of decision criterion that is appropriate to a problem depends on the state of knowledge regarding possible outcomes. Certainty describes a situation in which each course of action is believed to result in one particular outcome. Risk is a situation in which, for each course of action, alternative outcomes are possible, the probabilities of which are known or can be estimated. Uncertainty describes a situation in which, for each course of action, probabilities cannot be assigned to the possible outcomes.

In risk situations, which are the most common in practice, the objective normally is to maximize expected (long-run average) net gain or gross gain for specified costs, or to minimize costs for specified benefits. A business, for example, seeks to maximize expected profits or minimize expected costs. Other objectives, not necessarily related, may be sought; for example, an economic planner may wish to maintain full employment without inflation; or different groups within an organization may have to compromise their differing objectives, as when an army and a navy, for example, must cooperate in matters of defense.

READ ALSO  What Is operational research

In approaching uncertain situations one may attempt either to maximize the minimum gain or minimize the maximum loss that results from a choice; this is the “minimax” approach. Alternatively, one may weigh the possible outcomes to reflect one’s optimism or pessimism and then apply the minimax principle. A third approach, “minimax regret,” attempts to minimize the maximum deviation from the outcome that would have been selected if a state of certainty had existed before the choice had been made.

Each identified variable should be defined in terms of the conditions under which, and research operations by which, questions concerning its value ought to be answered; this includes identifying the scale used in measuring the variable.

Model construction

A model is a simplified representation of the real world and, as such, includes only those variables relevant to the problem at hand. A model of freely falling bodies, for example, does not refer to the colour, texture, or shape of the body involved. Furthermore, a model may not include all relevant variables because a small percentage of these may account for most of the phenomenon to be explained. Many of the simplifications used produce some error in predictions derived from the model, but these can often be kept small compared to the magnitude of the improvement in operations that can be extracted from them. Most operations research models are symbolic models because symbols represent properties of the system. The earliest models were physical representations such as model ships, airplanes, tow tanks, and wind tunnels. Physical models are usually fairly easy to construct, but only for relatively simple objects or systems, and are usually difficult to change.

The next step beyond the physical model is the graph, easier to construct and manipulate but more abstract. Since graphic representation of more than three variables is difficult, symbolic models came into use. There is no limit to the number of variables that can be included in a symbolic model, and such models are easier to construct and manipulate than physical models.

Symbolic models are completely abstract. When the symbols in a model are defined, the model is given content or meaning. This has important consequences. Symbolic models of systems of very different content often reveal similar structure. Hence, most systems and problems arising in them can be fruitfully classified in terms of relatively few structures. Furthermore, since methods of extracting solutions from models depend only on their structure, some methods can be used to solve a wide variety of problems from a contextual point of view. Finally, a system that has the same structure as another, however different the two may be in content, can be used as a model of the other. Such a model is called an analogue. By use of such models much of what is known about the first system can be applied to the second.

Despite the obvious advantages of symbolic models there are many cases in which physical models are still useful, as in testing physical structures and mechanisms; the same is true for graphic models. Physical and graphic models are frequently used in the preliminary phases of constructing symbolic models of systems.

Operations research models represent the causal relationship between the controlled and uncontrolled variables and system performance; they must therefore be explanatory, not merely descriptive. Only explanatory models can provide the requisite means to manipulate the system to produce desired changes in performance.

Operations research analysis is directed toward establishing cause-and-effect relations. Though experiments with actual operations of all or part of a system are often useful, these are not the only way to analyze cause and effect. There are four patterns of model construction, only two of which involve experimentation: inspection, use of analogues, operational analysis, and operational experiments. They are considered here in order of increasing complexity.

In some cases the system and its problem are relatively simple and can be grasped either by inspection or from discussion with persons familiar with it. In general, only low-level and repetitive operating problems, those in which human behaviour plays a minor role, can be so treated.

When the researcher finds it difficult to represent the structure of a system symbolically, it is sometimes possible to establish a similarity, if not an identity, with another system whose structure is better known and easier to manipulate. It may then be possible to use either the analogous system itself or a symbolic model of it as a model of the problem system. For example, an equation derived from the kinetic theory of gases has been used as a model of the movement of trains between two classification yards. Hydraulic analogues of economies and electronic analogues of automotive traffic have been constructed with which experimentation could be carried out to determine the effects of manipulation of controllable variables. Thus, analogues may be constructed as well as found in existing systems.

In some cases analysis of actual operations of a system may reveal its causal structure. Data on operations are analyzed to yield an explanatory hypothesis, which is tested by analysis of operating data. Such testing may lead to revision of the hypothesis. The cycle is continued until a satisfactory explanatory model is developed.

For example, an analysis of the cars stopping at urban automotive service stations located at intersections of two streets revealed that almost all came from four of the 16 possible routes through the intersection (four ways of entering times four ways of leaving). Examination of the percentage of cars in each route that stopped for service suggested that this percentage was related to the amount of time lost by stopping. Data were then collected on time lost by cars in each route. This revealed a close inverse relationship between the percentage stopping and time lost. But the relationship was not linear; that is, the increases in one were not proportional to increases in the other. It was then found that perceived lost time exceeded actual lost time, and the relationship between the percentage of cars stopping and perceived lost time was close and linear. The hypothesis was systematically tested and verified and a model constructed that related the number of cars stopping at service stations to the amount of traffic in each route through its intersection and to characteristics of the station that affect the time required to get service.

In situations where it is not possible to isolate the effects of individual variables by analysis of operating data, it may be necessary to resort to operational experiments to determine which variables are relevant and how they affect system performance.

Such is the case, for example, in attempts to quantify the effects of advertising (amount, timing, and media used) upon sales of a consumer product. Advertising by the producer is only one of many controlled and uncontrolled variables affecting sales. Hence, in many cases its effect can only be isolated and measured by controlled experiments in the field.

The same is true in determining how the size, shape, weight, and price of a food product affect its sales. In this case laboratory experiments on samples of consumers can be used in preliminary stages, but field experiments are eventually necessary. Experiments do not yield explanatory theories, however. They can only be used to test explanatory hypotheses formulated before designing the experiment and to suggest additional hypotheses to be tested.

READ ALSO  3 Reasons to Unlock Your PDF File With PDFBear

It is sometimes necessary to modify an otherwise acceptable model because it is not possible or practical to find the numerical values of the variables that appear in it. For example, a model to be used in guiding the selection of research projects may contain such variables as “the probability of success of the project,” “expected cost of the project,” and its “expected yield.” But none of these may be calculable with any reliability.

Models not only assist in solving problems but also are useful in formulating them; that is, models can be used as guides to explore the structure of a problem and to reveal possible courses of action that might otherwise be missed. In many cases the course of action revealed by such application of a model is so obviously superior to previously considered possibilities that justification of its choice is hardly required.

In some cases the model of a problem may be either too complicated or too large to solve. It is frequently possible to divide the model into individually solvable parts and to take the output of one model as an input to another. Since the models are likely to be interdependent, several repetitions of this process may be necessary.

Deriving solutions from models

Procedures for deriving solutions from models are either deductive or inductive. With deduction one moves directly from the model to a solution in either symbolic or numerical form. Such procedures are supplied by mathematics; for example, the calculus. An explicit analytical procedure for finding the solution is called an algorithm.

Even if a model cannot be solved, and many are too complex for solution, it can be used to compare alternative solutions. It is sometimes possible to conduct a sequence of comparisons, each suggested by the previous one and each likely to contain a better alternative than was contained in any previous comparison. Such a solution-seeking procedure is called heuristic.

Inductive procedures involve trying and comparing different values of the controlled variables. Such procedures are said to be iterative (repetitive) if they proceed through successively improved solutions until either an optimal solution is reached or further calculation cannot be justified. A rational basis for terminating such a process—known as “stopping rules”—involves the determination of the point at which the expected improvement of the solution on the next trial is less than the cost of the trial.

Such well-known algorithms as linear, nonlinear, and dynamic programming are iterative procedures based on mathematical theory. Simulation and experimental optimization are iterative procedures based primarily on statistics.

Testing the model and the solution

A model may be deficient because it includes irrelevant variables, excludes relevant variables, contains inaccurately evaluated variables, is incorrectly structured, or contains incorrectly formulated constraints. Tests for deficiencies of a model are statistical in nature; their use requires knowledge of sampling and estimation theory, experimental designs, and the theory of hypothesis testing (see also statistics).

Sampling-estimation theory is concerned with selecting a sample of items from a large group and using their observed properties to characterize the group as a whole. To save time and money, the sample taken is as small as possible. Several theories of sampling design and estimation are available, each yielding estimates with different properties.

The structure of a model consists of a function relating the measure of performance to the controlled and uncontrolled variables; for example, a business may attempt to show the functional relationship between profit levels (the measure of performance) and controlled variables (prices, amount spent on advertising) and uncontrolled variables (economic conditions, competition). In order to test the model, values of the measure of performance computed from the model are compared with actual values under different sets of conditions. If there is a significant difference between these values, or if the variability of these differences is large, the model requires repair. Such tests do not use data that have been used in constructing the model, because to do so would determine how well the model fits performance data from which it has been derived, not how well it predicts performance.

The solution derived from a model is tested to find whether it yields better performance than some alternative, usually the one in current use. The test may be prospective, against future performance, or retrospective, comparing solutions that would have been obtained had the model been used in the past with what actually did happen. If neither prospective nor retrospective testing is feasible, it may be possible to evaluate the solution by “sensitivity analysis,” a measurement of the extent to which estimates used in the solution would have to be in error before the proposed solution performs less satisfactorily than the alternative decision procedure.

The cost of implementing a solution should be subtracted from the gain expected from applying it, thus obtaining an estimate of net improvement. Where errors or inefficiencies in applying the solution are possible, these should also be taken into account in estimating the net improvement.

Implementing and controlling the solution

The acceptance of a recommended solution by the responsible manager depends on the extent to which he believes the solution to be superior to alternatives. This in turn depends on his faith in the researchers involved and their methods. Hence, participation by managers in the research process is essential for success.

Operations researchers are normally expected to oversee implementation of an accepted solution. This provides them with an ultimate test of their work and an opportunity to make adjustments if any deficiencies should appear in application. The operations research team prepares detailed instructions for those who will carry out the solution and trains them in following these instructions. The cooperation of those who carry out the solution and those who will be affected by it should be sought in the course of the research process, not after everything is done. Implementation plans and schedules are pretested and deficiencies corrected. Actual performance of the solution is compared with expectations and, where divergence is significant, the reasons for it are determined and appropriate adjustments made.

The solution may fail to yield expected performance for one or a combination of reasons: the model may be wrongly constructed or used; the data used in making the model may be incorrect; the solution may be incorrectly carried out; the system or its environment may have changed in unexpected ways after the solution was applied. Corrective action is required in each case.

Controlling a solution requires deciding what constitutes a significant deviation in performance from expectations; determining the frequency of control checks, the size and type of sample of observations to be made, and the types of analyses of the resulting data that should be carried out; and taking appropriate corrective action. The second step should be designed to minimize the sum of the costs of carrying out the control procedures and the errors that might be involved.

Since most models involve a variety of assumptions, these are checked systematically. Such checking requires explicit formulation of the assumptions made during construction of the model.

Effective controls not only make possible but often lead to better understanding of the dynamics of the system involved. Through controls the problem-solving system of which operations research is a part learns from its own experience and adapts more effectively to changing conditions.

Continue Reading


profesor mrs lilian salami Biography




Professor Mrs Lillian salami

Little biography of the newly appointed vice Chancellor of university of Benin profesor mrs Lillian salami

Mrs Salami (Nee Emovon) is a Professor of Home Economics/Nutritional Education. She is from Benin in Edo State. She was born in Jos, Plateau State, Nigeria on August 8, 1956.

Her early schooling started in Jos but was truncated by the Nigerian Civil War. Her primary and secondary education were then completed in Edo State.

She obtained her West African School Certificate (O’ levels) from Baptist High School, Benin City.

In 1975, she travelled to the United States of America, University of Wisconsin, Stevens Point Campus and had her summer schooling at the University of Minnesota, St. Paul. She later transferred to North Dakota State University, Fargo after she got married in 1977. There she obtained her Bachelor of Science degree in 1979 in Home Economics and Master’s degree in Nutrition in 1982. She returned back to Nigeria in 1983 and enrolled to serve in the National Youth Service Corps in Benin City.

Upon completion of the national service, she made a brief start of her teaching career with the then University of Ife, now Obafemi Awolowo, Nigeria. Between 1985 and 1994, she lectured Nutrition at the University of Maiduguri, Borno State, Nigeria

This was interjected when she gained admission into University of Nigeria, Nsukka for a doctoral degree in Human Nutrition in 1989 which she obtained in 1991. In 1994, she was appointed a Senior Lecturer with the University of Benin, Benin City.

As an administrator, She has held numerous positions at the prestigious University of Benin, Director of General Studies, Part-time programme and Chairman of the Board of University of Benin Integrated Enterprise.


She has also served as a member in many other committees. She is the immediate past Dean of the Faculty of Education and was a member of the apex body of the University, the Governing Council.

Prof. Salami has taught numerous undergraduate and postgraduate courses in Home Economics and Nutrition. She has successfully supervised over 40 masters and 15 PhD students.  She is a fellow of Nutrition Society of Nigeria and International Federation of Home Economics/Home Professional Association of Nigeria. As an administrator, she has held numerous administrative positions in the University of Benin and currently the Director General/Chief Executive of the National Institute for Educational Planning and Administration (NIEPA, Ondo). She has to her credit over 75 peer reviewed articles in national and international Journals. Outside academic, she is a member of the Advisory council to his royal majesty, the Oba of Benin, Omo N’Oba N’Edo, Ukukpolokpolo, Ogidigan, Oba Ewuare .

This is as extracted from the Twitter post of the great university of Benin (Uniben).

What do you think about the decision of the school, university of Benin to choose a female as her vice Chancellor?

Continue Reading